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A microcomputer system has been built to stimulate, record, and analyze responses from peripheral
insect olfactory receptor neurons. Software has been developed to sort action potentials (spikes) in
extracellular records obtained from multi-innervated antennal sensilla, and perform frequency, interspike
interval, distributional, and regression analyses on responses in groups of records. The olfactory stimuli
can be presented in different patterns, and plots or histograms of analyses, spike records, and individual
spikes can be displayed in different formats and hard-copied during a recording session. This report
describes the main features of the system and discusses the methods used for sorting spikes, performing
analyses, and managing records and analyses in a database. Examples are given of renewal density
analyses for 4 classes of peripheral receptor neuron in records from 2 types of olfactory sensillum on the
antenna of the cabbage looper moth, Trichoplusia ni (Hiibner).

Introduction

Continuing advancements in microcomputer memory capacity and interfacing
capability are encouraging developments of microcomputer-based systems for neu-
rophysiological research. Much of the appeal of these systems is due to their
adaptability. A few, generally applicable design principles can be used to develop
the initial system. Then, after some experience has been gained from its operation, it
can be modified easily to achieve specific objectives. Here, we describe a system
developed during an investigation of specialized olfactory receptor neurons on the
antennae of male moths. Such neurons detect an important odor cue, a blend of two
or more chemicals called the sex pheromone, which induces mate-seeking and
copulatory behaviours (Kaissling, 1971; Baker, 1985; Mayer and Mankin, 1985).
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A microcomputer system for analysis of sex pheromone detection and discrimina-
tion processes must perform a number of functions in common with any system that
stimulates, records, and analyzes responses from peripheral chemoreceptors. First,
the system must be able to analyze many different combinations and intensities of
stimuli. This is because, in general, the stimuli are multi-component blends of
chemicals that can vary considerably in the dynamic ranges over which they are
stimulatory physiologically and behaviorally. Also, chemosensory receptor neurons
are small in diameter and occur in groups that cannot be separated physically. The
responses must be recorded extracellularly and separated after they have been
recorded. Extracellular records often show considerable variability. It is difficult to
separate such responses using simple time/amplitude hardware discriminators.

For example, pheromone receptor neurons of the insect, Trichoplusia ni (Hiibner)
(see example in section in System Operation), are found in groups of 2-3 in sensory
hairs (sensilla) about 2 pm in diameter on the antenna. Sensillar recordings
frequently contain responses from more than one neuron, and occasionally re-
sponses from adjacent sensilla can be detected. Each individual neuron in a
sensillum responds differently than its neighbor to the different components of the
sex pheromone blend; consequently, each response must be classified and analyzed
separately. An inexpensive time/amplitude hardware discriminator fails to dis-
criminate the responses reliably because the spike durations are nearly identical, and
the spikes from two of the neurons usually have overlapping amplitude distribu-
tions, especially under strong stimulation.

Although the system was developed specifically for insect olfactory receptor
neurons, the description and procedures presented here apply to microcomputer
analysis of peripheral chemoreception in general. Parts of this description are
generally applicable to any system that handles numerous recordings containing
spikes of different types with overlapping amplitude distributions. The data acquisi-
tion and data storage procedures apply primarily to system configurations similar to
the one at our laboratory, but much of the analysis software is system-independent.
Also, depending on the variability of the recorded spike trains from their own
preparations, other investigators may prefer to develop either simpler or more
complex spike classification procedures than those presented here. Finally, the
procedures we developed over a period of time to facilitate system expansion may
be of interest to those who are continually developing new analyses that must be
integrated into an existing system.

System description

The complete system consists of an electrophysiological work station, a calibrated
odor delivery system, and a microcomputer with peripherals for digital /analog
(D/A) and analog/digital (A /D) conversion, video and hard-copy graphics, ASCII
communication, and signal timing, collection, display, and storage. The electrophys-
iological recording techniques are described in Mayer et al. (1987) and O’Connell
(1975), and the odor delivery system is described in Grant et al. (in preparation).
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This report deals primarily with the microcomputer software and the spike classifi-
cation and analysis methodology.

Hardware

The microcomputer system is a DECLAB-11/MNC. It has a 16-bit (binary digit)
LSI-11,/23 microprocessor with 64KB (Note: 1K = 1024, B =1 Byte = 8 bits, and 1
word = 2B = 16 bits) of direct-access main memory, which maps to an additional
64KB of secondary (virtual) memory via the RT-11 single-job operating system.
Peripherals include a VT-125 video graphics terminal, a LA-50 graphics printer, two
RLO2 disk drives, each with 5.2 MB of storage, a MNCKW clock, a MNCAD 12-bit
A/D converter, a MNCAA 12-bit D /A converter, DLV11-J asynchronous 4-chan-
nel RS-232 interface, and a 1200-baud modem. Newer, improved components are
available from many vendors.

The contents of the A/D, D/A, and asynchronous data transmission channels
are deposited in 1-word buffer registers by the LSI-11 bus, whence they can be
accessed by user-written assembly language subroutines. One subroutine controls
the odor stimulus by sending a voltage pulse down the D/A channel to actuate a
valve. Another subroutine, triggered by the clock at the rate of 10 kHz, transfers
neuronal potentials from the A /D register to buffer storage memory and disk. The
maximum rate of data transfer from memory to disk is about 7 kHz. Because the
transfer rate is less than the digitization rate, the system can store uninterrupted
samples on disk for no more than 2-3 s before it fills the buffer memory.
Discontinuous samples, however, can be stored on disk for records of up to 420 s
duration. Usually, to economize on the storage costs, the spikes are extracted from
the noise before the record is stored. The permanent record is a set of 20 samples of
each spike that comprise the first 2 ms of the spike’s 3-ms duration. The remainder
of the spike is discarded because it is of little use in classifying the spikes from the
preparations we have studied to date.

Software

The complete software consists of a main program, SPIKES, the only permanent
resident in memory, and 13 modules called individually from disk, selected from a
menu by the user. The functional relationships and the flow of data among the
different modules are shown in Fig. 1. Each module has access to about 100 user-
and 50 vendor-written FORTRAN and assembly language subroutines that also are
stored on disk until use. This format permits new analyses to be written quickly,
incorporating sections of software written previously, and contributes to standardi-
zation of programming and error-debugging conventions. It also permits large
subroutines to be implemented because only a small part of the program resides
permanently in memory. The modules’ operations subdivide under 4 categories:
data acquisition, spike classification, statistical analysis, and graphic displays. The
main features of the modules are described here, by category, and the following
section discusses some detailed methodology.

Each of the 3 data acquisition modules offers a different stimulus presentation
and recording period. ATODIS, the most often used data module, triggers a
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Fig. 1. Functional relationships and data flow among the microcomputer system software modules. Data
files are indicated by dashed boxes, and modules by solid boxes.

continuous stimulus pulse for a user-determined period within a total recording
period of 10.24 s. ATODMS triggers user-set multiple pulses, and has been useful
for examining dynamic characteristics of the pheromone receptor response. SPONT
monitors spontaneous (unstimulated) activity for a user-set number of spikes up to
1000, which facilitates comparisons with responses to low-level stimulation. The
data modules also store and process records differently. Both ATODIS and
ATODMS store neuronal responses, unprocessed, in a Raw Spike file for input to
the main spike classification module, SORT. SPONT, however, operates in a
recording-processing cycle. It records for 1.024-s periods, sorts the recorded spikes,
and stores them in a Sorted Spike file. Then it displays the spike frequencies, and
continues in the cycle until the user-set number of spikes have been collected.

SPONT uses a faster but less accurate spike classification procedure than SORT
to provide a more instantaneous description of the neuronal response. (It classifies
by spike amplitude, which in many cases is not sufficient to distinguish the spikes
reliably), while SORT uses additional criteria described below.) After the recording
session, however, the classification errors in SPONT-generated files can be corrected
by passing them through a reformatting module, RESORT, and then through SORT
(Fig. 1).

SORT screens Raw Spike files, identifying and sorting peaks into non-spike,
spike, and double spike categories, depending on the peaks’ waveforms. Double
spikes occur when 2 neurons in a sensillum discharge nearly simultaneously, and the
spikes overlap. When a peak is identified to be a spike, its type is assigned initially
by the distribution of a span area index (Fig. 2), which is the sum of the potential



311

2. "" fe—DBP—}¢—DPO—sle— DOT—»
Py
>
E
o
J
SO.
}_
=z
V8]
= -
o
a
Y T T S T T Y S A T M T S B H S R R |
o} 05 1.0 1.5 2.0

TIME (msec)

Fig. 2. Sample spike waveform recorded from a 7. ni HS(a) neuron showing critical time points, time

intervals, and span area (shaded area) used for spike classification: TB, time where potential first exceeds

cutoff; TP, time of peak maximum; TO, time where potential crosses through zero; TT, time of potential

minimum or trough; TE, time of last stored sample, 1.4 msec after TP and 2.0 ms after spike onset; PT,

trough potential; PE, potential of last stored sample; DBP, interval TP-TB; DPO, interval TO-TP;
DOT, interval TT-TO.

differences at 6 sampling points, 3 spanning the top and 3 spanning the trough of
the peak. Because the 2-3 neurons in a pheromone-sensitive sensillum have spikes
with distinctly different span areas, the spikes usually fall into separate groups on a
span area histogram. If SORT has difficulty in classifying the spikes, the user can
intervene by adjusting the span area cutoffs that determine the spike groupings. The
user also can adjust the criteria that determine whether a peak is a spike.

Once the spikes are split into groups, a mean spike template is made for each
group by averaging the digitized potentials at each of the 20 sampling points. Then
the initial spike assignments are confirmed by matching each peak against each
template. This procedure of prescreening and then template matching eliminates
many of the problems frequently encountered when templates are used to sort
spikes from extracellular recordings (Harding and Towe, 1976). SORT stores the
spike waveforms, times, and span areas in a Sorted Spike file for input to the
analysis and display modules.

The VERIFY module displays the spikes (and other peaks) in a Sorted Spike file
to let the user determine if they have been identified and classified correctly It has
the capability to display spikes singly or in groups. Different groups can be
displayed on the basis of their beginning and ending times, their beginning and
ending spike numbers, or by spike type. A sample display of a complete spike
record is shown in Fig. 3.

VERIFY corrects single or multiple classification errors, produces hard copies of
individual or groups of peaks upon request, and reclassifies double spikes into their
2 components. At the end of a verification session, it presents a summary of the
mean spike frequencies for each type during the pre, post, and stimulus intervals.

Frequency, interspike interval, regression, information content, and distributional
analyses are performed on Sorted Spike files by the SPFREQ, INDFRQ, INFTRA,
and RENEWL modules. SPFREQ and INDFRQ both calculate instantaneous spike
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Fig. 3. A: spike train recorded from a 7. ni HS sensillum exposed to 3 s of a low-intensity sex
pheromone stimulus. Bar at bottom denotes the stimulus period. B: expansion of Fig. 2A showing onset
of response about 0.7 s, after initiation of stimulus.

frequency during 0.1-s intervals. (This interval is adjustable, but we use 0.1 s as the
default.) SPFREQ analyzes records from different receptor neurons to generate a
histogram of response across time at a single stimulus concentration. INDFRQ
examines records from a single receptor neuron to determine the response pattern of
a single neuron across different stimulus concentrations. The spike frequencies are
stored by type in a separate Frequency Histogram file (Fig. 1), displayed or
hard-copied by the FQPLOT module. The FQPLOT histograms are particularly
useful for examining the dynamics of response from individual and groups of
peripheral receptor neurons. The results from the SPFREQ and INDFRQ analyses
also serve as input to subroutines that calculate regressions of neuronal response on
stimulus intensity.

The INFTRA module calculates the information content (entropy) of the
responses in groups of Frequency Histogram files by a method based on informa-
tion theory (Shannon and Weaver, 1949). Information content analysis is a non-
metric analog of the more commonly used analysis of variance. It provides several
parameters of interest in characterizing the discrimination of stimulus intensity and
the rate of information flow. For example, it permits the calculation of a differential
threshold determining the minimum number of different levels that a neuron can
distinguish across a continuum of different stimulus intensities (see e.g. Smith et al,,
1984). The output of the module is a set of values indicating the amount of
information transmitted per stimulus presentation during consecutive 0.1 s intervals
after the beginning of the stimulus. The values are stored in a separate Information
Data file and can be displayed by INFPLT (Fig. 1).
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Fig. 4. Auto- and cross-renewal densities of Type (a) and (b) neurons in a 5000-spike record of

spontaneous activity from a 7. ni HS sensillum. Dashed line is mean frequency (= expectation

frequency of a Poisson distribution). The shaded area indicates the burst size, the number of spikes in

excess of the expected number: A: autorenewal of Type (a) spikes on (a) spikes; B: autorenewal of Type
(b) spikes on (b) spikes; C: cross-renewal of Type (a) spikes on (b) spikes.

The RENEWL module calculates the interspike interval mean, variance, and
coefficient of variation for each spike type in groups of Sorted Spike files, and
generates a renewal density histogram, which is a measure of auto- and cross-corre-
lation (Perkel et al., 1967). The renewal densities and interspike intervals are stored
by type in a separate Interspike Interval file, displayed or hard-copied in histograms
by RENPLT (Fig. 4). RENEWL has been useful for characterizing the unstimulated
state of a neuron, for testing hypotheses about cross-excitation between neurons,
and for identifying damaged neurons. Both damaged and undamaged pheromone-
sensitive neurons tend to fire in bursts, i.e., groups of 2 or more spikes closely
spaced, the size of which can be determined from the auto-renewal density histo-
gram. The damaged neurons, however, appear to produce larger-sized bursts than
the undamaged neurons. An example of renewal density analysis is presented later
in the report.

Signal processing methodology

We next describe some pertinent details of the signal storage, sorting, error
checking, and analysis methodology.
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Signal timing and collection methods

The data acquisition modules record potentials in continuous segments of 1.024-s
(10K words) duration. Each segment recorded by ATODIS and ATODMS is
followed by a break of about 0.2 s, during which the data storage buffer empties to
disk. The breaks between recording periods are longer for SPONT, about 3 s,
because the spikes are sorted during the breaks. In ATODIS, the D /A port triggers
a stimulus valve at the end of the break between the 3rd and 4th segments (3.672 s
in real time, 3.072 s in recorded time). The D /A port resets the valve at the end of
the 6th segment, which turns off the stimulus. ATODMS enables the stimulus
trigger to be set at the beginning or end of any recording segment.

A simple record from ATODIS is shown in Fig. 3, as displayed by SPPLOT. In
this example, the stimulus pulse reaches the antenna about 0.6 s after activation of
the valve. The Raw Spike record thus comprises a 3.6-s prestimulus interval, a 4.1-s
stimulus interval, and a 3.4-s post-stimulus interval in real time, and occupies
102 400 words on disk. Because of the large amount of disk space required, the Raw
Spike records usually are not stored permanently. Instead, the interspike periods are
discarded and the spikes are stored in Sorted Spike records in blocks of 24 words
per spike (20 potential samples + double precision time + spike type + span area).
The disk storage occupied by the record thus decreases to no more than 24000
words for a spike train of 1000 spikes, the largest number that SORT can analyze
simultaneously.

Spike identification and sorting methods

The SORT module passes through the full Raw Spike file once, and any peaks
that it detects are rescreened twice — first to determine if a peak is a spike and then
to classify the identified spikes by type. In the initial pass, a peak detector steps
through consecutive digitized samples until the potential exceeds the predetermined
threshold. The peak detector stores in memory the threshold time (double precision),
designated as TB in Fig. 2, and places a set of 50 contiguous samples into a
temporary disk file, beginning at the 6th sample before TB and ending at TB + 43.
Then the peak detector continues to screen samples until the end of the file. Only 20
of the 50 samples in this set are stored later in the Sorted Spike file, beginning at the
2nd sample before TB and ending at TE. The samples after TE are of little value for
classification purposes, but the longer set is stored temporarily to capture double
spikes.

Next, the sets of peak samples are re-examined and compared against time and
amplitude criteria (Fig. 2). The main purpose of this pass is to screen out peaks that
should not be included in the calculation of a spike template and to realign the
spike samples relative to the time of peak maximum, TP, instead of the time of peak
threshold, TB (Fig. 2). The time of peak maximum is less affected by noise than TB;
consequently, the templates generated from spikes aligned together at TP have less
variance than templates from spikes aligned at TB. This pass also stores the times of
the peak maximum, zero-crossover, and trough, if they exist. Then the span area
(shaded area in Fig. 2) is calculated if the differences among the critical times (Fig.
2), DBP, DPO, and DOT fall within user-selectable limits and the potential at TE
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does not rise above zero. Typical criterion limits that have proved useful for
screening the T. ni pheromone receptor neurons are 1-4 for DBP, 3-7 for DPO,
and 2-5 for DOT (in units of 0.1 ms). We have occasionally found it necessary to
adjust these criteria to classify spikes from other insect preparations.

After the 2nd pass, SORT generates a span-area histogram, with the spikes that
meet the time/amplitude criteria, divides the groups of each spike type into regions,
and displays the divided histogram to the user for approval. The regions can be reset
manually, if necessary. Then a mean spike, with standard deviation, is calculated for
the spikes in each region. In the final pass, the peaks in the record are matched with
the mean spike templates, point by point. A peak that otherwise meets the criteria
above is rejected if the potential at any point is more than 2 standard deviations
away from the mean potential at that point. Depending on the degree of similarity,
a peak is determined to be noise, assigned a spike type, or flagged as an outlier for
the user to examine in VERIFY.

The cluster-separating and template-matching procedures that we used are com-
monly found in the literature, so they will not be discussed here in detail (see e.g.
Schmidt, 1984).

Spike-type error correction methods

Early in the system’s development, it became evident that locating and correcting
spike classification errors was the most time-consuming part of a recording session.
We have reduced this time considerably by incorporating 3 key features into
VERIFY. One is the implementation of a fast spike-ordering algorithm, based on
Singleton (1969). Ordering by span area permits the correction of multiple errors
with a single readjustment of a cutoff between 3 regions or spike types. This benefit
is counterbalanced, however, by the time needed to order the spikes. Singleton’s
algorithm reduced the spike ordering time to a few seconds for files as large as 1000
spikes. A 2nd time-saving feature of VERIFY lets the user superimpose a series of
spikes in order of either ascending or descending span area, one by one on the video
display. The 3rd feature is an interrupt capability, implemented by an assembly
language subroutine, that lets the user halt the series after any spike and branch
immediately into an error-correction subroutine.

The benefit of these features derives partly from the typical distribution of
classification errors made by SORT. Most of the errors occur at the extremes of the
span area ranges. For example, double spikes in which the components are sep-
arated by less than 0.3 ms sometimes escape detection because they fit within the
limits of one of the mean spike templates. Often, however, these spikes have span
areas that are intermediate between the 2 component types, and they can be located
by examining a few spikes with span areas just above and below the cutoff. Because
the errors tend to be clustered at the extremes, the fastest way to verify a large file is
to pass through about 15 spikes at the extreme span areas of each spike type.

Frequency, interspike interval, and information content analyses
In analyzing the response characteristics of insect olfactory receptor neurons, we
have found it particularly helpful to generate frequency, interspike interval, and
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information content histograms. The histograms are generated by the SPFREQ,
INDFRQ, RENEWL and INFTRA modules. The first 3 modules retrieve groups of
Sorted Spike files and generate frequency, interspike interval, and renewal density
histograms. INFTRA retrieves groups of Frequency Histogram Data files and
generates a histogram of the information contained in the response at different
times after the stimulus begins.

In addition to the frequency histogram, SPFREQ and INDFRQ also calculate
the overall mean frequency and the expectation frequency of the Poisson distribu-
tion (Kaissling, 1971; Mankin and Mayer, 1983). The Poisson distribution is of
interest in the analysis of responses at low stimulus concentrations where it is
difficult to distinguish stimulus-evoked spikes from spontaneous activity. The
expected Poisson frequency is calculated from the equation:

F,=In(N/N,) (1)

where F, is the frequency (number of spikes/sampling interval), In is the natural
logarithm, N is the number of intervals sampled, and N, is the number of intervals
in which no spikes occurred. We have found 0.1 s intervals to be the most
convenient to use, but the procedure is applicable for any interval greater than or
equal to the 3 ms spike duration. There are some benefits to considering different
sampling intervals, but their discussion is outside the scope of this report.

The instantaneous and Poisson frequencies both are calculated by distributing
interspike intervals within a 3-dimensional stack (matrix) of bins or counters. The
first dimension indicates the spike type. In recordings from 7. ni preparations two
types usually occur, designated (a) and (b). The 2nd dimension indicates the
particular 0.1-s interval in which spikes are to be counted. There are 102 segments
(bins) of 0.1 s in a typical record from ATODIS. The 3rd dimension indicates the
number of spikes that occur during a given 0.1-s interval. Because the refractory
period limits the maximum frequency to about 300 spikes/s, we consider only 35
possibilities for each 0.1-s interval, from 0 to 34 spikes/interval. Thus, the stack for
a record which has 2 types of spike is 2 bins deep by 102 bins long by 35 bins high.

As each Sorted Spike file is examined, the number of spikes of each type
occurring during each interval is counted and added to the bin corresponding to the
appropriate spike type, the interval, and the number of spikes in that interval. The
Poisson frequency for each interval and type is calculated by dividing the number of
files examined by the number of occurrences of 0 spikes during the interval. The
instantaneous frequency for a given interval is calculated by summing the number
of spikes in the interval and dividing by the product of the interval period and the
number of files examined.

In INFTRA, the information content of the signal transmitted by a neuron is
calculated by a non-metric approach that subdivides both the stimulus and response
continua into categories instead of magnitudes. The stimulus—response relationship
for a given type of neuron is represented by a stack (matrix) of bins similar to that
described above for calculation of the frequency histogram. One dimension des-
ignates responses, r, of different intensities (the third dimension in the frequency
histogram matrix), a second subdivides the responses into different time intervals
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(the second dimension in the frequency histogram matrix), and a third designates
stimuli of different intensities, s. When frequency histograms are generated for each
of the different stimulus levels considered in the information content analysis, the
entries that INFTRA needs for the stimulus-response matrix do not have to be
calculated because they already are stored in the Frequency Histogram Data files.

To calculate the information content, INFTRA performs several different sums
on the entries of each time interval. One sum, N, is the total number of stimulus
presentations, i.e., it is the sum of all the matrix entries, n,, at a particular time
interval. Another, n_, is the sum of the matrix entries for each stimulus across all
response categories, and a third, n,, is the sum of the matrix entries for each
response category across all stimulus categories. The information content is a
combination of several terms of the form:

log(N') — n log(n) )

where log is the logarithm in base 2 and n is either n,,, n,, or n,. A more complete
discussion of information content is found in Smith et al. (1984), Mankin et al. (in
preparation), and in references therein. The final result is a set of values for the
information content of the stimulus at each interval after the beginning of the
stimulus, which is stored in an Information Data File (Fig. 1).

The logic for calculating the renewal density is similar to that for the frequency
analysis. The interspike intervals are subdivided into periods of 1 ms (adjustable, if
the periods are too broad or too narrow), and a 4-dimensional set of bins is
constructed, 2 by 2 by 1500 by 2 units, to count intervals of particular kinds. The 1st
and 2nd dimensions indicate, respectively, the type of spike for the 1st and 2nd
spike of each spike pair. The 3rd dimension indicates the number of spike pairs with
interspike intervals of a given duration (in ms) over a range of 1-1500 s. The 4th
dimension is for the cross-renewal density analysis, and denotes whether an (a)
spike follows or precedes a (b) spike.

System operation

This section considers some of our experiences with the microcomputer system
during 4 years of operation. In particular, we assess spike classification errors and
describe procedures to facilitate file identification and retrieval. An example of the
system operation is provided by a renewal density analysis of the spontaneous
activity of pheromone-sensitive receptor neurons in 7. ni.

Spike classification errors

Two types of spike classification errors can occur, one where a spike is misclassi-
fied, and the other where an actual spike is miscategorized as an outlier. Analyzing
T. ni recordings that contain spikes from two neurons, SORT misclassifies about
0.5% of the spikes examined later by VERIFY, and another 1-2% are miscate-
gorized as outliers for the user to sort manually. Most of the miscategorized spikes
deviate significantly from the template near the baseline, due to noise. However, if
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the standard deviation criterion for template matching is relaxed sufficiently to keep
such spikes from being rejected, double spikes begin to pass through SORT
undetected. It has been our practice to use stringent criteria that ensure the
detection of double spikes.

The frequency of misclassification errors depends primarily on the spike am-
plitude-to-noise ratio and the range of span areas for each spike type in a record. If
the fraction of errors is large, the cause is usually that the span area histograms have
subdivided indistinctly. For example, the amplitudes of the type (a) and (b) spikes
may overlap so much that there is no discernible minimum in the span area
histogram. At other times, a high noise level may lead to the generation of a group
of peaks whose span areas overlap with those of the smallest type (b) spikes. In
some preparations, spikes of unusually small amplitude appear in addition to types
(a) and (b). Spikes of such amplitude usually are considered to be from neurons in
adjacent sensilla. Here, however, the span area histograms typically divide into three
separate regions. A sensillum preparation is discarded if the histograms do not
divide cleanly into regions and the user cannot reclassify them easily in VERIFY.
This kind of problem occurs only rarely in recordings from 7. ni and usually is
discovered early in a recording session.

Two special cases should be considered briefly. First, numerous errors occur if
the time /amplitude criterion parameters have been set incorrectly, but this type of
problem usually is identified by SORT, which informs the user when it discards an
excessive fraction of the peaks. Second, a problem with decrementing amplitude
occurs when the antenna is stimulated with high concentrations of some pheromone
components. The T. ni antenna bears two types of pheromone-sensitive sensillum,
HS and LS, each with two neurons (a) and (b). At high concentrations of the
pheromone component that stimulates the HS(a) neuron, the amplitudes of HS(a)
spikes often decrement down to about the size of the HS(b) spikes so that it is
impossible to distinguish between them either visually or by computer. However, at
still higher concentrations, the amplitudes of the HS(a) neurons decrement below
the amplitudes of the HS(b) neurons and the spikes can again be distinguished.

It should be noted that there are many indexes in addition to span area that can
be used to distinguish spikes (e.g. O’Connell et al., 1973; Harding and Towe, 1976;
Van der Molen et al., 1978; Hanson et al., 1986; Frazier and Hanson, 1986). Some
systems use several parameters in concert (Piesch and Wieczorek, 1982; see also
Schmidt, 1984). We tested standard deviation and total spike area indexes before
settling on span area as the criterion index, and found that all 3 indexes had similar
error rates for 7. ni pheromone-sensitive receptor neurons.

File retrieval

The procedure for naming and retrieving data files is an important feature of the
system, not only because the data base is extensive, but also because a large number
of files must be processed for statistical analysis. The SPFREQ, INDFRQ, and
RENEWL modules, in particular, cannot rely on time-consuming manual input of
file names. To solve this problem and expedite file identification, we have coded the
file name with the information most important for retrieval. By convention, each file
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name consists of several codes that are concatenated in a fixed order to describe the
neuron and the stimulus conditions. Files in a particular analysis group are retrieved
easily by a fast directory utility with a wild-card feature or by a user-written,
file-lookup program.

Example of system operation — renewal density analysis

Several questions about the characteristics of 7. ni pheromone receptor neurons
led us to develop a renewal density analysis. First, because the (a) and (b) neurons
are packed tightly together in both the HS and LS sensilla, we wanted to test for
electrical cross-excitation or cross-inhibition. The cross-renewal density histogram
tests for these processes (Abeles, 1982; see also discussion below) by showing any
tendency of an (a) or (b) neuron to discharge immediately after its partner
discharges. Second, we were interested in whether the response of each individual
neuron is an independent Poisson point process. If so, the distribution of interspike
intervals is predictable (Cox and Lewis, 1966). Knowledge of the interspike interval
distribution simplifies the interpretation of responses at low pheromonal stimulus
levels where the rate of discharge approaches the level of spontaneous activity
(Mankin and Mayer, 1983). The autorenewal density provides a test of indepen-
dence for spikes from the same neuron. Finally, we needed an objective method for
determining whether a neuron was discharging abnormally. Autorenewal density
analysis bears also on this problem because the spontaneous activity of a damaged
neuron is probably non-random.

The applicability of renewal density analysis to such problems derives from
several well known characteristics of Poisson point processes. In a random Poisson
process, the renewal density is a constant equal to the mean frequency. Departures
from the Poisson distribution appear as bulges or dips on the mean frequency
baseline in the renewal density histogram. An example is Fig. 4, a sample display
from RENPLT, which shows the auto- and cross-renewal densities of the (a) and (b)
neurons in a 5000-spike record of spontaneous activity from an HS sensillum. The
histograms in Fig. 4A, B have bulges above the baseline. The bulges indicate that
these two neurons tend to fire in bursts, i.e., that the occurrence of one spike tends
to facilitate the occurrence of another spike soon afterwards.

The shaded areas in Fig. 4A, B measure the number of spikes above the level that
would occur if the neuron discharged each spike independently rather than firing in
bursts. The average number of spikes in a burst, m, can be calculated from these
shaded areas, s, as m = 25 + 1 (see Abeles, 1982; Protter and Morrey, 1963, p. 205).
By this measure, the HS(a) neuron in Fig. 4A fires in bursts of 1.55, and the HS(b)
neuron in Fig. 4B fires in bursts of 1.96. This indicates that the spikes produced by
each individual. (a) or (b) neuron are not completely independent of each other and
only approximate an independent Poisson point process.

The cross-renewal density histogram in Fig. 4C, in contrast, is reflective of a true
Poisson-point process. There are no bursts of (a) spikes following a (b) spike, and
vice versa. Neither is there a significant reduction in spike discharge from the
baseline. Apparently, the two neurons discharge independently of each other.

Several properties of the spontaneous activities of the (a) and (b) receptor
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neurons in 11 7. »i HS and LS sensilla are listed in Table 1. (The example in Fig. 4
is sensillum 4.) The abnormal preparations usually would have been discarded after
the events noted at the bottom of the table. We continued monitoring these
particular preparations, however, to determine whether periods of bursting would
appear in the renewal density histogram as bulges above the mean frequency
baseline.

The results in Table I follow the pattern in Fig. 4, indicating that the (a) and (b)
neurons in a 7. ni pheromone-sensitive HS or LS sensillum discharge independently
of their partners, but the spontaneous activity of each individual neuron is not a
completely independent Poisson process. The HS(b) and LS(a) neurons, in particu-
lar, had a tendency toward bursting, with a mean burst size of 1.9 and 2.5 spikes,
respectively. The mean spontaneous activities of the normal preparations, calculated
as the inverse of the interspike intervals, are similar to those reported by Grant and
O’Connell (1986).

To determine if the burst size could be used as a test of abnormality, we applied
the Dunnet’s least significant difference test (Stell and Torrie, 1960) to the abnormal
neurons in Table I. Two of the 4 burst numbers from the abnormal neurons were
significantly different from the normal means at the 0.01 confidence level (asterisk).
We conclude that, although the burst size is a good indicator of abnormality, it is
not a fail-safe test. However, each of the abnormal neurons was significantly
different when the mean and variance of the interspike interval were included in the
comparisons with normal receptor neurons. Consequently, it still may be possible to
develop an objective test of neuronal damage to complement the subjective methods
now used in insect olfactory studies.
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